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§1. Introduction and Main Theorem

In our previous paper [2], we studied further the solutions of the following differential
equation in the upper half-plane H which was originally found and studied in [4] in
connection with the arithmetic of supersingular elliptic curves;

f ′′(τ)− k + 1
6

E2(τ)f ′(τ) +
k(k + 1)

12
E′

2(τ)f(τ) = 0.

Here, k is an integer or half an integer, the symbol ′ denotes the differentiation
(2πi)−1d/dτ = q · d/dq (q = e2πiτ ), and E2(τ) is the “quasimodular” Eisenstein se-
ries of weight 2 for the full modular group SL2(Z):

E2(τ) = 1− 24
∞∑

n=1

(∑

d|n
d
)
qn.

Let p ≥ 5 be a prime number and Fp−1(τ) be the solution of the above differential
equation for k = p− 1 which is modular on SL2(Z) (such a solution exists and is unique
up to a scalar multiple). For any zero τ0 in H of the form Fp−1(τ), the value of the j-
function at τ0 is algebraic and its reduction modulo (an extension of) p is a supersingular
j-invariant of characteristic p, and conversely, all the supersingular j-invariants are
obtained in this way from the single solution Fp−1(τ) with suitable choices of τ0. This
is the arithmetic connection that motivated our study of the differential equation.

Various modular forms on SL2(Z) and its subgroups were obtained in [2] as solutions
to this differential equation, the groups depending on the choice of k. Every modular
solution is expressed in terms of a hypergeometric polynomial in a suitable modular
function (hence the “hypergeometric type” in the title of the paper), also depending on
the choice of k. For instance, if k ≡ 0, 4 mod 12, we have a modular solution

E4(τ)
k
4 F (− k

12
,−k − 4

12
,−k − 5

6
;
1728
j(τ)

),
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where

F (a, b, c; x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
, (a)n = a(a + 1) · · · (a + n− 1)

is the Gauss hypergeometric series (which becomes a polynomial when a or b is a negative
integer, which is the case here), E4(τ) the Eisenstein series of weight 4 on SL2(Z), and
j(τ) the elliptic modular invariant.

In addition to the modular solutions, quite remarkable was an occurrence of a quasi-
modular form, not of weight k as in the modular case but of weight k+1. In the present
paper, we give another supply of examples of quasimodular forms as solutions to an
analogous differential equation attached to the group Γ∗0(2), which is not contained in
SL2(Z);

Γ∗0(2) =
〈

Γ0(2),
(

0 −1
2 0

)〉

where

Γ0(2) =
{(

a b
c d

)
∈ SL2(Z)| c ≡ 0 mod 2

}
.

(Γ∗0(2) is the triangular group “2A” in the notation of Conway-Norton [1].)
Let

E2A(τ) := (E2(τ) + 2E2(2τ))/3 = 1− 8q − 40q2 − 32q3 − · · ·
be the quasimodular form of weight 2 on Γ∗0(2) which is the logarithmic derivative of
the form

∆2A(τ) := η(τ)8η(2τ)8 = q − 8q2 + 12q3 + 64q4 − · · ·
of weight 8 on Γ∗0(2); E2A(τ) = ∆′

2A(τ)/∆2A(τ), an analogous situation in the SL2(Z)
case where E2(τ) is the logarithmic derivative of the Ramanujan ∆(τ). Consider the
following differential equation;

(#)k f ′′(τ)− k + 1
4

E2A(τ)f ′(τ) +
k(k + 1)

8
E′

2A(τ)f(τ) = 0.

Solutions which are modular on the group Γ∗0(2) and its subgroups were studied in
[6, 7]. In particular, when k is a non-negative integer congruent to 0 or 6 modulo 8,
the equation (#)k has a one dimensional space of solutions which are modular on the
group Γ∗0(2) itself. We note here that the equation (#)k has a characterization by the
invariance of the space of solutions under the action of Γ∗0(2), similar to the previous
case for SL2(Z), owing to the fact that there is no holomorphic modular form of weight
2 on Γ∗0(2) (see [5] and [2, §5]). By a general theory of ordinary differential equations, we
see that the equation (#)k has a quasimodular solution (which, since its transformation
under τ → −1/2τ is also a solution, inevitably gives a solution having log q term in the
expansion at q = 0) only when k is a positive integer congruent to 3 modulo 4.



QUASIMODULAR FORMS 3

In the following, we show there indeed exists a quasimodular solution in this case
and describe explicitly the solution in terms of a certain orthogonal polynomials. First
we need to develop some notations. Put

C(τ) := 2E2(2τ)− E2(τ)

= 1 + 24
∞∑

n=1

( ∑
d|n

d:odd

d
)
qn = 1 + 24q + 24q2 + 96q3 + · · · ,

D(τ) :=
η(2τ)16

η(τ)8
=

∞∑
n=1

( ∑
d|n

d:odd

(n/d)3
)
qn = q + 8q2 + 28q3 + 64q4 + · · · ,

where

η(τ) = q
1
24

∞∏
n=1

(1− qn) = q
1
24 − q

25
24 − q

49
24 + q

121
24 + · · ·

is the Dedekind eta function. The functions C(τ) and D(τ) are modular forms of
respective weights 2 and 4 on the group Γ0(2) (=“2B”) and the graded ring of modular
forms of integral weights on Γ0(2) is generated by these C(τ) and D(τ). Recall that
(see [3]) an element of degree k in the graded ring C[E2(τ), C(τ), D(τ)], where the
generators E2(τ), C(τ), D(τ) have degrees 2, 2, and 4 respectively, is referred to as a
quasimodular form of weight k (on Γ0(2)). Incidentally, the graded ring of modular
forms of integral weights on Γ∗0(2) is generated by three elements C(τ)2 = (E4(τ) +
4E4(2τ))/5, C(τ)3 − 128C(τ)D(τ) = (E6(τ) + 8E6(2τ))/9, and ∆2A(τ) of respective
weights 4 , 6 , 8, of which C(τ)2 and ∆2A(τ) generate freely the subring consisting forms
of weight being multiple of 4, and the whole space as a graded module is generated over
this ring by C(τ)3 − 128C(τ)D(τ).

Now define a sequence of polynomials Pn(x) (n = 0, 1, 2, . . . ) by

P0(x) = 1, P1(x) = x, Pn+1(x) = xPn(x) + λnPn−1(x) (n = 1, 2, . . . )

where

λn = 4
(4n + 1)(4n + 3)

n(n + 1)
.

First few examples are

P2(x) = x2 + 70, P3(x) = x3 + 136x, P4(x) = x4 + 201x2 + 4550, . . . .

The Pn(x) is even or odd polynomial according as n is even or odd. We also define a
second series of polynomials Qn(x) by the same recursion (with different initial values):

Q0(x) = 0, Q1(x) = 1, Qn+1(x) = xQn(x) + λnQn−1(x) (n = 1, 2, . . . ),

a couple of examples being

Q2(x) = x, Q3(x) = x2 + 66, Q4(x) = x3 + 131x, . . . .

The Qn(x) has opposite parity: It is even if n is odd and odd if n is even.
Put G(τ) = C(τ)2 − 128D(τ) (= (4E4(2τ)− E4(τ))/3).
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Theorem. Let k = 4n+3 (n = 0, 1, 2, . . . ). The following quasimodular form of weight
k + 1 on Γ0(2) is a solution of (#)k :

√
∆2A(τ)

n
Pn

( G(τ)√
∆2A(τ)

)C ′(τ)
24

−
√

∆2A(τ)
n+1

Qn

( G(τ)√
∆2A(τ)

)
.

Remark. The appearance of the square root
√

∆2A(τ) in the formula is superfi-
cial because of the parities of Pn(x) and Qn(x), that is, the form is actually an
element in Q[E2(τ), C(τ), D(τ)], by noting ∆2A(τ) = D(τ)(C(τ)2 − 64D(τ)) and
C ′(τ) = (E2(τ)C(τ)− C(τ)2)/6 + 32D(τ). The form does not belong to Γ∗0(2).

§2. Proof of Theorem

It is convenient to introduce the operator ϑk defined by

ϑk(f)(τ) = f ′(τ)− k

8
E2A(τ)f(τ).

By the quasimodular property of E2(τ) or the fact that E2A(τ) is the logarithmic
derivative of ∆2A(τ), we have the transformation formulas

E2A

(
aτ + b

cτ + d

)
= (cτ + d)2E2A(τ) +

4
πi

c(cτ + d) (
(

a b
c d

)
∈ Γ0(2))

and

E2A

(
− 1

2τ

)
= 2τ2E2A(τ) +

8
πi

τ.

From these we see that if f is modular of weight k on a subgroup of Γ∗0(2), then ϑk(f)
is modular of weight k + 2 on the same group. If f and g have weights k and l, the
Leibniz rule

ϑk+l(fg) = ϑk(f)g + fϑl(g)

holds. We sometimes drop the suffix of the operator ϑk when the weights of modular
forms we consider are clear. With this operator, the equation (#)k can be rewritten as

(#′)k ϑk+2ϑk(f)(τ) =
k(k + 2)

64
C(τ)2f(τ),

(use E′
2A(τ) = (E2A(τ)2 − C(τ)2)/8).

Denote the form in the theorem by Fk(τ). We first establish the recurrence relation
(note n = (k − 3)/4):

(1) Fk+4(τ) = G(τ)Fk(τ) + λn∆2A(τ)Fk−4(τ).
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This is a consequence of the recursion of Pn and Qn, namely (we often omit the variable
τ hereafter)

GFk + λn∆2AFk−4

= G

(√
∆2A

n
Pn

( G√
∆2A

)C ′

24
−

√
q∆2A

n+1
Qn

( G√
∆2A

))

+ λn∆2A

(√
∆2A

n−1
Pn−1

( G√
∆2A

)C ′

24
−

√
∆2A

n
Qn−1

( G√
∆2A

))

=
√

∆2A

n+1
(

G√
∆2A

Pn

( G√
∆2A

)
+ λnPn−1

( G√
∆2A

))C ′

24

−
√

∆2A

n+2
(

G√
∆2A

Qn

( G√
∆2A

)
+ λnQn−1

( G√
∆2A

))

=
√

∆2A

n+1
Pn+1

( G√
∆2A

)C ′

24
−

√
∆2A

n+2
Qn+1

( G√
∆2A

)

= Fk+4.

Now we prove by induction that the Fk(τ) satisfies the equation (#′)k. We can
check the cases k = 3 and 7 directly. Assume Fk−4 and Fk satisfy (#′)k−4 and (#′)k

respectively. Then by using (1) and the formulas

ϑ(C) = −1
4
G, ϑ(G) = −1

2
C3, ϑ(∆2A) = 0

we have

ϑ2(Fk) = ϑ
(
ϑ(Fk)G− 1

2
C3Fk

)
+ λn∆2Aϑ2(Fk−4)

= ϑ2(Fk)G− 1
2
ϑ(Fk)C3 +

3
8
C2GFk − 1

2
C3ϑ(Fk) + λn∆2Aϑ2(Fk−4)

=
k(k + 2)

64
C2GFk − C3ϑ(Fk) +

3
8
C2GFk +

(k − 4)(k − 2)
64

λn∆2AC2Fk−4

=
k2 + 2k + 24

64
C2GFk +

(k − 4)(k − 2)
64

λn∆2AC2Fk−4 − C3ϑ(Fk).

Hence we find

ϑ2(Fk+4)− (k + 4)(k + 6)
64

C2Fk+4

=
(

k2 + 2k + 24
64

− (k + 4)(k + 6)
64

)
C2GFk

+
(

(k − 4)(k − 2)
64

− (k + 4)(k + 6)
64

)
λn∆2AC2Fk−4

= −C2

(
k

8
GFk + Cϑ(Fk) +

k + 1
4

λn∆2AFk−4

)
.
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The proof of the theorem therefore boils down to show the equation

k

8
GFk + Cϑ(Fk) = −k + 1

4
λn∆2AFk−4.

For this we also proceed by induction. For k = 7 the equation is checked directly.
Assuming that this is valid for k, we have

Fk+4 = GFk + λn∆2AFk−4 =
1

2(k + 1)
(
(k + 2)GFk − 8Cϑ(Fk)

)

and

k + 4
8

GFk+4 + Cϑ(Fk+4)

=
k + 4

16(k + 1)
G

(
(k + 2)GFk − 8Cϑ(Fk)

)

+
1

2(k + 1)
C

(−1
2
(k + 2)C3Fk + (k + 2)Gϑ(Fk) + 2Gϑ(Fk)− 8Cϑ2(Fk)

)

=
(k + 2)(k + 4)

16(k + 1)
(G2 − C4)Fk

= −k + 5
4

λn+1∆2AFk.

Here we have used the (previous) induction assumption that Fk satisfies (#′)k and the
relation G2 − C4 = −256∆2A. This completes our proof.
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